FOSTER'S POND

Aquatic Management Program 10-Year Summary

April 29, 2014

Marc Bellaud ACT President

Overview of Presentation...

Foster's Pond condition in 2004 **Development of a weed treatment program Fanwort management** Other invasive management Water quality monitoring results Algae management Where do we go from here

Foster's Pond in August 2004

POND AREA: 125 acres

AVERAGE DEPTH: less than 7 feet

FANWORT COVER:

moderate to high biomass; found at 87% of data points locations; lake wide cover estimated at 53%

MANAGEMENT TECHNIQUES

Different Approaches

- Physical/Manual
- Mechanical
- Chemical
- Biological

Determining Which One to Use

- Program goals and objectives
- Accurate plant identification
- Environmental constraints
- Social acceptability
- Cost

FACTORS FOR HERBICIDE SELECTION...

- Target species
- Size & configuration of treatment area
- Selectivity desired or required
- Water uses
- Flow considerations
- Timing
- Cost

SONAR Herbicide

- active ingredient: Fluridone
- manufacturer: SePRO Corporation
- Characteristics
 - Systemic mode of action / growth inhibitor
 - Used for submersed and floating plants
 - Liquid and granular formulations
 - Favorable toxicology
 - Excellent control of fanwort; the only aquatic herbicide registered in 2005 that controlled fanwort
- TREATMENT PROGRAM: Sonar (liquid) herbicide applied to whole-lake; 3 separate applications to maintain >60 days of herbicide concentration-exposuretime

Monitoring and Maintenance

- Routine surveys
- •Identify other invasives – 3 submersed now found
- Spot-treatments
- Modify approaches

Data point locations (established 2004)

2006

- •Glenwood Road Basin / Dug Pond
- •Brazilian elodea (*Egeria densa)*
- •Sonar herbicide treatment

- •Partial-lake Sonar treatment
- Sonar pellet formulation
- •Limno-barriers

2008 & 2009

- •Surveys by ACT in 2008 and by Geosyntec in 2009
- •Similar findings
- •Increasing plant and fanwort cover in 2009
- •Presence of Spiny Naiad (*Najas minor*)

Table 1: Aquatic Vegetation Data Summary

Year	Estimated % Total Plant Cover	Estimated % Fanwort Cover	Biomass Index	Species Richness Index
2004	78.9	54.5	2.9	3.6
2005	25.5	0.1	1.4	1.7
2008	15.9	0.9	1.6	1.7
2009	34.2	6.1	1.6	5.5

2009 Foster's Pond Aquatic Vegetation Survey and Water Quality Monitoring Report

OCTOBER 15, 2009

Prepared For:

Prepared By:

289 Great Road Acton, MA 01720 (978) 263-9588 www.Geosyntec.com

2010

- •Spiny Naiad spottreatment
- •Reward (diquat) herbicide fast acting, contact herbicide, good for control of annual plant

Table 1: Aquatic Vegetation Data Summary

Year	Estimated % Total Plant	Estimated % Fanwort Cover	Biomass Index	Species Richness Index
	Cover			
2004	78.9	54.5	2.9	3.6
2005 ¹	25.5	0.1	1.4	1.7
2008	15.9	0.9	1.6	1.7
2009	34.2	6.1	1.6	5.5
20111	19.0	0	1.2	1.4
2012	21.2	0.1	1.3	1.6

Fanwort Locations 8/23/12

R

0 250 500 1,000 1,500 2,000 Feet

Algal Bloom – what happened?

- •Cyanobacteria or bluegreen algae
- •Present for a long time in Foster's Pond
- Causes of blooms
- •Advisory & Risks
- •What can be done

2012 Water quality monitoring

- •Replicated previous WQ sampling
- •Phosphorus elevated which fuels algae growth
- •Cyanobacteria bloom most evident in Main Pond and Outlet Cove

2013 Algae Management

- •Water clarity monitored by FPC
- •Samples collected and analyzed
- •Copper sulfate algaecide applied to half the pond on 7/12/13
- •90% reduction in cyanobacteria in 4 days

Issues

- Elevated nutrients
- •Pond history and formation
- •Shallow depth and bottom type
- Watershed inputs
- •Invasive plants that nutrient management can't fix

- 1. Maintain control of fanwort and other invasive plants
- 2. Prevent bloom conditions of cyanobacteria from developing
- 3. Investigate longer term improvements in water quality and overall condition of the pond

POTENTIAL IMPACTS OF EXOTIC OR INVASIVE PLANTS

FISH, WILDLIFE & NATIVE PLANTS

- Displacement of native plants
- Displacement of endangered, threatened or rare aquatic plants
- Habitat loss for fish & wildlife
- Change in spawning site availability
- Change in fish distribution
- Reduction in feeding success of predatory fish
- Reduction of open-water

WATER QUALITY

- Temperature & oxygen fluctuations
- Increased phosphorus (nutrient) loading
- Alteration in plant and algae
 communities
- Accelerated eutrophication rates

Source: A report from the Milfoil Study Committee on the Use of Aquatic Herbicides to Control Eurasian Watermilfoil in Vermont. VTDEC, March 1993

POTENTIAL IMPACTS OF EXOTIC OR INVASIVE PLANTS (continued)

RECREATION

- Risk of swimmer entanglement
- Reduced access for boating & fishing
- Reduced aesthetics

LOCAL COMMERCE & REAL ESTATE

- Reduced property taxes
- Declining property values Renters fail to return for a second season
- Slowed business for marinas, etc.
- Declining attendance at lakefront beaches and parks

Source: A report from the Milfoil Study Committee on the Use of Aquatic Herbicides to Control Eurasian Watermilfoil in Vermont. VTDEC, March 1993

INVASIVE AQUATIC PLANTS

- Eurasian Watermilfoil
- Variable Watermilfoil
- Fanwort
- Water Chestnut
- Curlyleaf Pondweed
- Common Reed / Phragmites
- Purple Loosestrife
- Hydrilla
- Spiny naiad
- Southern naiad
- Parrot feather
- Brazilian waterweed
- Hybrid milfoils
- Cyanobacteria; toxic bluegreen algae

What is a herbicide? Approximately 300 registered herbicides in the US, but less than 15 are registered for aquatic use

-Sel

Registered aquatic herbicides available in the 1990's

<u>Compound</u>	Year Registered	Mode of Action
2,4-D Ester	1959	Systemic – auxin mimic
2,4-D Amine	1976	
Copper	1950's	Contact – phs – membrane
Diquat	1962	Contact – PSII – membrane
Endothall	1960	Contact – Resp. – membrane
Glyphosate	1982	Systemic – protein synthesis
Fluridone	1986	Systemic – Enzyme inhibitor

Aquatic herbicides registered since 2002

<u>Compound</u>	Year Registered	Mode of Action
Triclopyr	2002	Systemic – auxin mimic
Imazapyr	2003	Systemic – ALS inhibitor
Peroxide	2003 (1980s)	Contact - algaecide
Carfentrazone	2004	Contact – Enzyme- membrane
Penoxulam	2007	Systemic – ALS inhibitor
Imazamox	2008	Systemic – ALS inhibitor
Flumioxazin	2010	Contact – protox
Bis-pyrobac	2012	Systemic – ALS inhibitor
Topramezone	2013 expected	Systemic – HPPD inhibitor

Source: USACE, ERDC

Concentration Exposure Time (CET)

Source: US Army Engineers – ERDC 2.5 2.0 **Untreated** 4 WAT CONCENTRATION, mg ae/L B A 1.5 1.0 0 0 0.5 0 0 0.0 12 24 72 84 0 36 48 60 **EXPOSURE TIME**, hours

Control Predictions

- A: 0 70 % (regrowth likely)
- B: 70 85 % (regrowth potential subject to site conditions)
- C: >85 % (limited regrowth potential)

- active ingredient: Flumioxazin
- manufacturer: Valent U.S.A. Corporation
- Characteristics
 - Contact herbicide rapid mode of action
 - Targets submersed and floating plants and some filamentous algae
 - Prefers low pH water
 - Fanwort (*Cabomba caroliniana*) control

Pre-Treatment 5/17/12

RLUMACAAFT

Post-Treatment 6/11/12

Summary – Invasive Aquatic Plant Control

- 8 new active ingredients registered by EPA for aquatic use since 2003 and more are on the way
- Rotate chemistries
- Use new products, new formulations and new approaches
- Manage invasive species using an integrated approach

Nutrient Management

manage the PROBLEM not the pest

Why Manage Algae?

Poor water clarity

Taste & Odor

Aesthetics

Recreational impairment

Diurnal Oxygen Fluctuations

Cyanobacteria Toxins (HAB's)

Nuisance algae conditions are triggered by excessive nutrients – usually phosphorus

Control Algae (Treat the symptoms)

- Copper products, alternative algaecides
- Aeration
- Control Nutrients (Treat the source)
 - Increase N:P ratio / reduce favorability for cyanos
 - Watershed management
 - In-Lake Phosphorus Reduction

Why is Watershed Management Sometimes Not Enough?

- •May take many years to make a difference.
- •Difficult/Expensive to implement
- •May not be feasible to lower nutrient concentrations below critical threshold.
- Contributions of internal recycling

Methods of In-Lake Phosphorus Reduction

•As an alternative to copper treatments until watershed management efforts come to fruition.

•Address *internal recycling* when it's a significant component of nutrient load.

Aluminum Sulfate

- •Used extensively in the drinking water industry.
- •Is not a herbicide or algaecide, but a chemical precipitant/coagulant that binds with phosphorus rendering it biologically unavailable.

Limitations of alum

•Reaction causes drop in pH

- •Must be buffered in soft/low-alkalinity water
- •Even with buffering, there are still limitations for smaller and shallow lakes, so only phosphorus-**Precipitation** can occur and not phosphorus-**Inactivation** of the sediment

What is Phoslock?

- A patented technology which effectively binds and removes phosphorus
- Consists of two naturally occurring components found in soil
- Lanthanum embedded inside modified bentonite clay layers
- Stable and non-toxic technology

How Phoslock Removes Phosphorus

Removes Free Reactive Phosphorus (FRP)

Overview of Phosphorus Inactivation

- Precipitation/Recovery vs. Inactivation/Reset (Low vs. High Dose)
- Dose Determination (Multiple Methods)
- Dose Verification/Pilot Treatment
- Full-Scale Implementation
- Treatment Monitoring
- Post-Treatment Monitoring

Alum Treatments

Phoslock Applications

- Phoslock slurry injected or surface applied
- Tank mix granule with H2O, constant agitation
- Even coverage to maximize performance

SeClear® – Algaecide & Water Quality Enhancer

Summary – Algae Control & Nutrient Management

- There is excessive phosphorus in Foster's Pond
- Internal recycling vs external loading needs to be identified
- Algaecide treatments control the symptom
- Phosphorus removal can target the cause
- Alum or Phoslock can be considered for phosphorus removal
- SeClear is an option for maintenance treatments

ONGOING MANAGEMENT WILL BE NEEDED TO CONTROL NUISANCE WEEDS AND ALGAE

Marc Bellaud, President/Aquatic Biologist

Aquatic Control Technology

11 John Road

Sutton, MA 01590

508-865-1000 phone

508-865-1220 fax

Web: <u>www.aquaticcontroltech.com</u>

E-mail: MBellaud@aquaticcontroltech.com

Important dates in the regulation of aquatic herbicides

- 1910 Federal Insecticide Act
- 1947 FIFRA administered by USDA
- 1962 "Silent Spring" by Rachel Carson
- 1970 EPA created
- 1972 Federal Environmental Pesticide Control Act
- 1988 FIFRA amended to require re-registration
- 1996 Food Quality Protection Act amended both FIFRA and FFDCA requires EPA to reevaluate all tolerances for pesticides and inerts
- 2008 EPA completed reregistration of all products registered prior to 1984; 15-year renewal cycle

